
Fachhochschule Aachen
Campus Jülich

Faculty: Medical Engineering and Applied Mathematics
Degree program: Scientific Programming

Reverse Engineering
An exemplary approach to the fundamentals of reverse engineering

Bachelorthesis
in partial fulfillment of the requirements for the Bachelor of Science

by

Volker Mauel
Student no. 855252
Jülich in August 2014

Eidesstattliche Erklärung

Hiermit versiche ich, dass ich die Bachelorarbeit mit dem Thema
Reverse Engineering

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmit-
tel benutzt habe, alle Ausführungen, die anderen Schriften wörtlich oder sinngemäß
entnommen wurden, kenntlich gemacht sind und die Arbeit in gleicher oder ähn-
licher Fassung noch nicht Bestandteil einer Studien- oder Prüfungsleistung war.

Name:

Jülich, den

Unterschrift der Studentin / des Studenten

Diese Arbeit wurde betreut von:
1. Prüfer Prof. Ulrich Stegelmann
2. Prüfer Josef Heinen

Abstract

Reverse engineering describes the process of taking an existing product and disassembling
it in order to understand how parts of it and the product as a whole works. In software
development, it is a common technique to understand certain parts of software and to
implement similar features in a new project. Additionally, it is often used in malware
analysis. Reverse engineers can figure out how malware spreads and what it does on the
target system. This does not necessarily mean that reverse engineering itself can only
be applied to causing and preventing damage to a system, but also to extend an existing
software system.
For instance one could imagine a measurement device for radioactivity with software

on a computer that logs the results. The software used to work correctly with an earlier
Windows version (e.g. Windows XP), but does not work with a newer Windows version
(e.g. Windows 7). Additionally, the company that created the measurement device
does not offer support for it any more. This is where reverse engineering helps. It
enables programmers to understand how the software communicates with the device and
allows them to implement its functionality in a new program. Furthermore, reverse
engineering gives developers the opportunity to extend existing software to match the
needs of the users. If the aforementioned measurement device software writes a text file
at the end of the measurement and then simply closes, reverse engineers could identify
which instructions create the file. They can then inject a Dynamic-link library (Dll),
detour the existing application flow, and, in addition to writing the file to the hard drive,
make the application send an e-mail containing the results to the user.
This thesis focuses on giving a general overview of the possibilities as well as showing

how to apply the mentioned techniques to find out more information on a program.
Therefore an example application has been created, explained in detail in chapter 4, which
simulates the measurement device software. It connects via sockets to a server, which
simulates the measurement device itself, that sends the acquired data to the application.
It is added to a list and, at the end of the measurement, the whole list is saved into a
text-file.
Additionally the legal situation for reverse engineering of software in the United States

and the European Union is clarified in chapter two.

Contents

1 Introduction 1

2 Reverse Engineering - Theory 3
2.1 Definition . 3
2.2 Types of Reverse Engineering . 3

2.2.1 File Structure . 3
2.2.2 Protocols . 4
2.2.3 Function . 4

2.3 Legal Aspects . 5
2.3.1 European Union . 5
2.3.2 United States . 5

2.4 Tools . 5
2.4.1 IDA - The Interactive Disassembler 5

2.5 General Approach . 7
2.6 Using the Acquired Information . 7

2.6.1 Memory Reading/Writing . 7
2.6.2 Hooking . 8
2.6.3 Injection . 8

2.6.3.1 Code-Injection . 8
2.6.3.2 Dll-Injection . 9

3 Background 11
3.1 The Environment . 11
3.2 Assembly-language . 11

3.2.1 Operations . 12
3.2.2 The Stack . 12
3.2.3 Stackframe . 12
3.2.4 Flow Control . 14
3.2.5 Return Values . 14

3.3 Calling Conventions . 15
3.3.1 Cdecl . 15
3.3.2 Stdcall . 15
3.3.3 Fastcall . 15
3.3.4 Thiscall . 16

4 The Example Application 17
4.1 The Application . 17

I

4.2 Starting the Application . 17
4.3 Network Protocol . 17
4.4 File Structure . 18
4.5 Diagrams . 18

5 The Process of Reverse Engineering 21
5.1 Beginning . 21

5.1.1 The Main-function pt. 1 . 21
5.1.2 Subroutine sub_4012C0 . 22
5.1.3 The Main-function pt. 2 . 23

5.2 Conclusion . 27

6 Using the Acquired Information 29
6.1 The Application . 29

6.1.1 The Structs . 29
6.1.2 WinAPI Imports . 30
6.1.3 The Helper-Class . 31
6.1.4 The Offsets-Class . 31
6.1.5 The Wrapper-Class . 32
6.1.6 The Main-Function . 34

7 Conclusion 37
7.1 Future work/perspective . 37

7.1.1 Hex-Rays Decompiler . 38
7.1.2 Managed Dll Injection . 38

Bibliography 39

II

List of Figures

2.1 Reverse engineering and traditional software development[Pro] 4
2.2 Flowcharts and XRef-graphs in IDA . 6

(a) An example of a flowchart in ID . 6
(b) An example of an XRef-graph in IDA 6

2.3 An example of the strings in IDA . 6

4.1 Flowdiagram of the Application and the Device 19

III

List of abbreviations

API Application Programming Interface
CLR Common Language Runtime
CPU Central Processing Unit
Dll Dynamic-link library
DMCA Digital Millennium Copyright Act
EULA End-user license agreement
FASM Flat Assembler
IDA Interactive Disassembler
IEEE Institute of Electrical and Electronics Engineers
JIT just-in-time
MSDN Microsoft Developer Network
TLS thread-local storage

IV

Chapter 1

Introduction

Reverse engineering is a useful technique in software development to understand the
internals of a program. This thesis explains the fundamentals of reverse engineering
computer software.
Chapter two discusses the definition of Reverse Engineering provided by the Institute

of Electrical and Electronics Engineers (IEEE). Different methods of reverse engineering
are explained. The legal landscape of reverse engineering in the United States and the
European Union are also discussed.
Since reverse engineering to a great extent consists of reading and understanding assem-

bly, the third chapter focuses on explaining the quintessences of the assembly language
and calling conventions. Additionally, the tool Interactive Disassembler (IDA), which
has been used as part of this thesis, is described.
The fourth chapter overviews an example application which has been written as part

of this thesis. This application simulates the connection to a measuring device, receives
data from it and writes the output into a text-file.
The fifth chapter shows how to reverse engineer an unknown application on the basis of

the aforementioned example application. The knowledge of the internal processes of the
application is disregarded. The reader will understand how to find out more information
on the internal program flow and how to structure the disassembled output in the tool
IDA to discover the relevant parts of the software.
The sixth chapter focuses on using the knowledge from chapter five to acquire the data

from the measuring device in a new application by reading from the original one.
The seventh chapter is a conclusion on whether reverse engineering is a viable option

in software development.

1

2

Chapter 2

Reverse Engineering - Theory

This chapter explains the required theory to understand reverse engineering. It illustrates
the definition of reverse engineering and the different types. Additionally, legal aspects
are clarified for the European union and the United States and it explains how to use
the acquired information of the application.

2.1 Definition

The IEEE describes reverse engineering as follows: "reverse engineering means using
engineering techniques to discover the underlying ideas and principles governing how
a machine, computer program, or other technological device works".[IEE11] Figure 2.1
shows the process of reverse engineering in the context of classic forward engineering, as
a form of abstraction that begins at the implementation of an existing system and ends
at the conceptual layer. The section in the middle of the figure shows that with reverse
engineering it is possible to alter all layers of the software and finally, by using forward
engineering, create a new software which contains these alterations.

2.2 Types of Reverse Engineering

Reverse engineering cannot only be applied to programs as a whole, but also to different
parts and aspects of it. These can be categorized into File Structure, Protocols
and Functions. Usually the process begins with reverse engineering the functions of
a program and meanwhile learning about file structures and protocols, but one could
imagine using network analyzing software, like Wireshark, to understand the protocol.
To examine the structure of an unknown file, the tool Binwalk can be used.

2.2.1 File Structure

Programs often use their own file structures to save the data. Proprietary software often
uses proprietary file structures that are not documented to obligate the users and make
switching to another program inconvenient or even impossible. An example of this is
Microsoft Office, whose file structures remained undocumented for a long time.
Reverse engineering can help to identify the file structure and to write a program that

converts files from the proprietary format into a documented structure.

3

(Alteration)

Forward
Engineering
(Refinement)

Reverse
Engineering

(Abstraction)

Design

Requirements

Existing system

Implementation

Con-
ceptual

Con-
ceptual

Requirements

Design

Implementation

re-specify

re-think

re-code

re-design

compare

functionality
quality

Target System

Figure 2.1: Reverse engineering and traditional software development[Pro]

2.2.2 Protocols

Applications that use other devices or services from a server have to implement a specific
protocol to ensure that the request is correct and that the response can be used. These
protocols are rarely documented.

Reverse engineering enables developers to find out the relevant aspects of the commu-
nication protocol and implement these in a new program which can be extended easily.

2.2.3 Function

Software sometimes contains functionality that a programmer wants to adopt in their
own application. An example could be image editing software which contains image
filters which the developer wants to have in their own application.

Reverse engineering can help to find out the way the original application implemented
the function and gives the programmer the opportunity to implement the feature in
their application. The respective law or End-user license agreement (EULA) has be to
observed. (see ch. 2.3)

4

2.3 Legal Aspects

Since reverse engineering is such a controversial topic and potentially allows plagiarism,
the law has to regulate under which circumstances it is legal to use reverse engineering
techniques.

2.3.1 European Union

In the European Union it is permitted to reverse engineer software for the purpose of
interoperability, but not to create a competing product. Additionally it is prohibited to
release the information obtained through reverse engineering.[Mus98]

2.3.2 United States

The Digital Millennium Copyright Act (DMCA) states that reverse engineering is legal
for programs if it is for the purpose of interoperability.[Usc] Contrary to the law in the
European Union, the EULA overrides the copyright law for this aspect.1 Therefore most
EULAs prohibit reverse engineering explicitly.

2.4 Tools

Reverse engineering without supporting tools is possible but very time-consuming. The
most popular software for reverse engineering is IDA. It offers a huge list of features and
aims at professional users. In this thesis IDA Pro in version 6.1 was used, but it should
be mentioned that there are free tools like OllyDbg[Oll] which can be used instead of
IDA.

2.4.1 IDA - The Interactive Disassembler

The Interactive Disassembler (IDA) is a debugger and disassembler that is often used
by reverse engineers to analyze programs. It features a static code analyzer that auto-
matically parses the functions inside the executable and names them according to their
position (sub_400000 e.g.). Additionally IDA creates a flow chart for functions to help
the developer understand which code paths are used in which case. This can be seen in
figure 2.2(a). IDA can use several different debuggers on the local machine as well as
attach to processes on remote systems. This allows reverse engineers to run potentially
malicious code in virtual machines to analyze it from the host computer. Furthermore
IDA analyzes the exported and imported functions and automatically creates so-called
XRefs2 between them. This allows the user to search for a specific import like printf and

1precedent Bowers v. Baystate Technologies http://www.infoworld.com/d/developer-world/contract-
case-could-hurt-reverse-engineering-337

2XRefs are cross-references between different parts of the application e.g. a string and a function can
be cross-referenced, so the developer knows that the string is used in this specific function and in
which other functions it is used.

5

automatically list all occurrences of that method call in a window. Figure 2.2(b) shows
the references to printf in an application.

(a) An example of a flowchart in ID (b) An example of an XRef-graph in IDA

Figure 2.2: Flowcharts and XRef-graphs in IDA

Figure 2.3: An example of the strings in IDA

Another important point is that IDA automatically parses all strings in the executable
and lists them in a seperate subview shown in figure 2.3. This allows quick navigation
through the code by looking for a string that is known to be used at a specific point in
the application.

6

2.5 General Approach

The general approach without any knowledge of the target program is opening it in a
disassembler and looking at the disassembled output. The entry point of an application
is the most interesting part since it is the root of all function calls. In Microsoft Win-
dows based applications it is either named start for console applications or WinMain for
applications with a graphical user interface. After initialization code for variables and
exception handling and run-time environments, the originally named main-function can
be found.
Renaming different parts of the disassembled output makes it easier to get an overview

of the functions and variables. All dissemblers support renaming of functions and vari-
ables.
For further analysis, the used datastructures should be mapped.3 Once these are

mapped and named, the variables using these structures should have their type changed
to the type of the structure, to see which members are accessed.

2.6 Using the Acquired Information

Depending on the type of reverse engineering employed (see 2.2), the gathered informa-
tion from an application can be used in various ways. This part of the thesis focuses on
using the results of analyzing the application as a whole and getting information out of
it while it is being executed by using ReadProcessMemory.

2.6.1 Memory Reading/Writing

The Windows Application Programming Interface (API) offers methods to read and write
the memory of other processes. This allows the reverse engineer to read from the previ-
ously acquired memory locations and copy the data into another program. The required
functions are OpenProcess, ReadProcessMemory and WriteProcessMemory. First, the
process has to be opened by using OpenProcess(int Access, bool InheritHandle, int Pro-
cessId). The process-id can be obtained by using one of the different process enumeration
options and filtering the result for the correct process name. The result of OpenProcess
is a handle that can be passed to ReadProcessMemory(int handle, int baseaddress, void*
buffer, int size, int* numberOfBytesRead).
ReadProcessMemory(int handle, int baseaddress, void* buffer, int size, int* numberOf-

BytesRead) accepts this handle as first argument. The baseAddress is the memory loca-
tion to read from, buffer is where the data from the other application will be copied to,
size is the number of bytes to read and numberOfBytesRead is the number of bytes that
have been read from the target process.
The following code shows how to use OpenProcess and ReadProcessMemory.

1 IntPtr handle = OpenProcess (0x10 ,false ,123); //open process with id 123
2 byte[] buffer = new byte [4]; // create a buffer

3When working with C++ classes, the reverse engineer has to make sure that they have enough room
for the data including potential virtual-method-table pointers.

7

3 int readBytes =0;
4 var result = ReadProcessMemory(handle ,0xCBADE ,buffer ,4,ref readBytes); //

reads 4 bytes from address CBADE and copies them into the buffer.
5 // buffer now contains the 4 bytes and can be used like any byte -array

WriteProcessMemory works in a similar way.

2.6.2 Hooking

Hooking describes the act of detouring the applications control flow into a user-written
code-section, that will be executed before or instead of the original method. In assembly
this would appear as the following:

1 method:
2 add eax ,5 ;eax+=5
3 mov ebx ,10 ;ebx=10
4 imul eax ,ebx ;eax *=10
5 ret ; summary: eax=(eax+5)*10

A hooked function would look like this:
1 method:
2 jmp hook ;the hook -code is executed before the original code
3 mov ebx ,10
4 imul eax ,ebx
5 ret
6 hook:
7 add eax ,5 ;restore the statement ‘‘jmp hook ’’ overwrote
8 ;do something else e.g. modify eax or print its value to the console
9 jmp 3

2.6.3 Injection

Injection describes the process of injecting new code into an already running application,
which is normally not part of it. Since it is running in the context of the target ap-
plication, it can access the memory by normal dereferencing and referencing operations
without the need for a WinAPI call.

2.6.3.1 Code-Injection

Code-Injection uses the Windows API function WriteProcessMemory (see 2.6.1) to write
code into the target process’ memory. This action requires previously allocated memory
in the target process that has to be acquired by using the function VirtualAllocEx. Only
writing into the target process does not change any of its functionality. Either a new
thread has to be started by using the function CreateRemoteThread or an existing thread
has to be detoured. Most of the time the main thread of the target application is
used, as it also removes the need for synchronization and allows access to the thread-
local storage (TLS)4. The injected code often only consists of some basic assembler
instructions. Since these instructions have to be translated by libraries such as AsmJit

4The TLS is a memory region only accessible by that specific thread. To access its information, the
thread has to be detoured.

8

and FasmManaged5 before being injected into the target process. This makes the
resulting code more maintainable and easier to read compared to raw byte-sequences.

2.6.3.2 Dll-Injection

Dll-Injection works by loading a user-written library into the target process’ address space
and using CreateRemoteThread to start a method inside this library. It is important to
consider that DllMain must not start threads or load libraries itself, since this could
cause a deadlock. [Msda]
To perform a Dll-Injection the function OpenProcess is used to get a handle to the

process. Next, with VirtualAllocEx memory for the name and path of the Dll is allocated.
With WriteProcessMemory, the path is then written into the target process. By calling
LoadLibrary via CreateRemoteThread in the target process, the Dll is loaded and DllMain
is executed. By using WaitForSingleObject, the injecting process will wait until the Dll
loaded successfully. Then, GetExitCodeThread can be used to get the return value of
LoadLibrary which is the base address of the loaded Dll in the target process. To avoid
memory-leaks the memory for the filename has to be freed.
Now, the Dll is inside the target process and the only part left to do is to call an

exported function inside that Dll with CreateRemoteThread. To find that function in the
target process, the Dll is loaded into the local process and GetProcAddress is called to
find the offset from the modules base-address to the function. Then the local version
of the Dll can be freed and in the target process a thread can be started by using
CreateRemoteThread with the address of the module base (LoadLibrary return value)
plus that offset.[Dll]
It is also possible to make a process load a modified library of another library by

copying it into the Dynamic-Link Library Search-path and renaming it to match the
original file name. The Dll is required to have the same entry-points or loading it will
fail. This removes the need to inject a Dll during run-time.

5AsmJit and FasmManaged both support just-in-time (JIT) translation of assembler code (e.g. mov
eax,ebx) into the corresponding byte-sequences.

9

10

Chapter 3

Background

This chapter focuses on giving an overview of the basics needed to understand the process
of reverse engineering. It contains an introduction to the Assembly-Language and an
overview of the different calling-conventions.

3.1 The Environment

Reverse engineering is a highly compiler-dependent and platform specific topic. Since
Microsoft Windows is the most popular operating system and supports binary compat-
ibility between different versions, most software is written for it. Therefore this thesis
describes reverse engineering of Windows-based software. The computer used for de-
veloping the software and reverse engineering it as part of this thesis uses Microsoft
Windows 7 Professional x64.

3.2 Assembly-language

All computer programs consist of code that is executed by the Central Processing Unit
(CPU), but it can only execute certain commands which are predefined in the so-called
Instruction Set. As this thesis targets a Windows based PC-application, the only
considered instruction set is x86.1

Upon loading a program, the instruction pointer (EIP) is initialized and set to the ap-
plications entry point.2 Then the first instruction is loaded, executed and the instruction
pointer is modified to match the executed instruction.
The assembly-syntax used in the examples is Flat Assembler (FASM), which is easier

to understand than the Intel-syntax used in the IDA code snippets. For basic instructions
and operations they are identical, but for more complex situations FASM is more readable
and easier to maintain. Additionally, the library FasmManaged (see Chapter 2.6.3.1),
which supports JIT translation of instructions to byte code, uses the FASM syntax.

1This does not include the x86 64 instruction set, which is mostly an extension of the x86 instruction
set

2Usually this will be the start or the WinMain function of an application

11

3.2.1 Operations

x86 assembly supports a number of operations like adding, subtracting, multiplying, di-
viding, bit-wise operations like AND, OR, XOR and comparisons. Furthermore memory
manipulations are possible to load and store data.
Examples:

mov eax ,[ebx] ;reads the value at address EBX and move it into EAX

add eax , 10 ;adds 10 to the value in EAX

sub ebx , 15 ;subtracts 15 from EBX

mov eax , 15 ;moves 15 in the EAX register
mov edx , 16 ;moves 16 in the EDX register
mul edx ;multiplies EAX*EDX and stores the result in edx:eax.

3.2.2 The Stack

The stack of a program contains arguments for function calls and return addresses. The
EBP register always points to the base of the stack (or stackframe) and the ESP register
points to the top of the stack. Values and arguments can be stored on the stack by using
the push operation and retrieved from the stack by using the pop operation. Alternatively
stack-variables can be accessed by adding or subtracting the matching offset from the
base pointer EBP.
Example:

push 5 ;pushes 5 on the stack
push 6 ;pushes 6 on the stack
push 7 ;pushes 7 on the stack
mov eax , [ebp] ;gets 5 from the stack , but does not remove it
pop ebx ;ebx now contains the value 7
pop esi ;esi contains the value 6
pop edi ;edi now contains the value 5

The corresponding stack during run-time looks like this:

0xF8 7 ⇐ ESP
0xFC 6
0x100 5 ⇐ EBP

3.2.3 Stackframe

The stack is a data structure that grows upwards. It might begin at 0x100 and the
next value would be inserted at 0xFC. A stackframe is a boundary created by a function
to preserve the state of the stack and to allow the usage of local variables without
unintentionally modifying the wrong arguments. It is created by saving the previous base-
pointer on the stack and setting the base-pointer to the value of the stack-pointer.[Eag11,
p. 91]

12

The typical sequence to achieve this is as follows:

0x12344 call method ;call the method
0x12345 jmp AnotherSection ;jump to a different section

0x12346 push ebp ;saves previous basepointer
0x12347 mov ebp , esp ;sets ebp to esp to create the new stackframe

The resulting stack looks like this:

0x100 0x12345 ⇐ EBP,return address

Example:

start:
push 0x2 ;pushes the argument onto the stack
call method ;calls the method

method:
push ebp
mov ebp ,esp
mov eax , [ebp+8] ;loads the argument into eax
mov ebx ,10 ;loads 10 into ebx
imul eax ,ebx ;multiplies ebx*eax and store the result in eax
mov esp ,ebp ;removes the current stackframe
pop ebp ;restores the old stackframe
ret 4 ;removes the argument from the stack

It is important to remember that the return address is pushed onto the stack after the
last argument, so the correct offset to read that argument is 8.
In this example an empty stackframe was created. To actually fill the stack with data

like local variables, the size of the stack frame has to be increased. This is achieved by
subtracting from the ESP register.
Example:

method:
push ebp
mov ebp ,esp
sub esp ,0xc ;gets space for 3 local variables on the stack
mov [ebp -4], 123 ;saves the variable in the first free slot on the stack
mov [ebp -8], 234
mov [ebp -12], 345
;DoSomething
mov esp ,ebp
pop ebp

This is what the stack looks like before initializing it with any data:

0x100 0x12345 return address ⇐ EBP,return address

And this is what it looks like after increasing the size of the stack frame and adding the
three local variables to it:

13

0xF4 345 ⇐ ESP
0xF8 234
0xFC 123
0x100 0x12345 ⇐ EBP,return address

3.2.4 Flow Control

The instruction pointer is modified to allow flow control. This does not happen directly,
but indirectly by using operations like jmp or call. This allows to structure the code
into different subroutines. These can be executed by using the call -Instruction. The
main difference between jmp and call is, that jmp only modifies the instruction pointer
to set the next instruction which will be executed its operand. Call, on the other hand,
in addition to modifying the instruction pointer also pushes the address of the next
instruction onto the stack. This allows the execution to continue there after the Call.
Example:
start:
0x00 mov eax , SomeMethod
0x01 push 5
0x02 call eax
0x03 push 4

At first the instruction pointer is set to 0x0. The subroutine-pointer is moved into
the EAX register. Then the instruction pointer is increased to 0x01 so the push 5 will
be executed next. Then the argument (5) is pushed onto the stack and the instruction
pointer is increased again. Next the subroutine call follows, so the instruction pointer
is set to the beginning of SomeMethod so it will be executed next. Additionally, the
address of the instruction that comes after the call will be pushed onto the stack so the
program knows where it has to continue after executing the subroutine. In this case, the
value 0x03 will be pushed on the stack.
Furthermore, assembly offers control statements to compare values. As opposed to

high-level programming languages, it return the result of the comparison a special register
(ZF - zero flag). This register can be checked by conditional jump statements such as
jnz (jump not zero), jlt (jump less than) and jge (jump greater equals). If the zero flag
is set, it will stay set until the next comparison changes it.

3.2.5 Return Values

By convention, the return value of a function is stored in the EAX register. For data too
large to fit into a single register, it is required to return a pointer to the result.

14

3.3 Calling Conventions

Calling conventions define in which order arguments are pushed onto the stack upon a
subroutine call and who (the caller or the callee) has to clean the stack from the pushed
arguments. The most commonly used calling conventions are cdecl, stdcall, fastcall and
thiscall.

3.3.1 Cdecl

When using the cdecl calling convention, the caller has to clean the stack after the
subroutine call. Arguments are pushed from right to left onto the stack. Furthermore it
is the only calling convention that supports variadic functions such as printf since only
the caller knows how many arguments have been pushed onto the stack and have to be
removed again.[Fri14][Eag11, p. 85]
Example:

push arg1
push arg2
push arg3
call function
add esp ,12 ;cleans the stack

3.3.2 Stdcall

The stdcall calling convention assumes that the callee clean the stack before returning.
Besides that, it behaves like to cdecl.
Example:

push arg1
push arg2
push arg3
call function
; no stack cleanup - callee does this

3.3.3 Fastcall

The fastcall calling convention has not been standardized and is very compiler-dependent.
The Microsoft Visual C(++) Compiler (MSVC) passes the first 2 DWORD or smaller ar-
guments from left to right in the ECX and EDX register. The other arguments are passed
from right to left on the stack. The callee is responsible for cleaning the stack.[Msdc]
Example:

mov ecx , arg1
mov edx , arg2
push arg3
call function

15

3.3.4 Thiscall

The thiscall calling conventions is used for calling subroutines on objects. The this-
pointer is passed in the ECX-register, the other arguments are passed via the stack from
right to left. The callee cleans the stack.
mov ecx ,object
push arg1
push arg2
call function
; no stack cleanup - callee does this

16

Chapter 4

The Example Application

As mentioned in Chapter 2.3 reverse engineering can be prohibited by the EULA and is
only allowed for reasons of interoperability. In order to not violate any copyright laws, an
example application has been developed as part of this thesis to demonstrate the process
of reverse engineering.
This chapter briefly describes the internal structure of that application.

4.1 The Application

The application simulates the software of a measurement device (e.g. to measure radi-
ation). It connects to the device and receives measurement values every second. These
values are printed to the console and also, at the end of the execution, saved into a
text-file. (as detailed in figure 4.1)

4.2 Starting the Application

The software is started by passing a command-line argument with it that contains the
amount of values that should be measured. If no argument is passed, the default amount
is 100. The application then connects to the server-application (that simulates the mea-
suring device itself) and receives data from it which consists of:

• A Timestamp

• Value1

• Value2

4.3 Network Protocol

The clients first message to the server has to be "measure X" where X is the amount
of values that should be measured. The data is not encoded and is transferred as little-
endian byte-sequences.
After the desired amount of values has been transmitted, the server closes the connec-

tion.

17

4.4 File Structure

The data received from the server application is written into a text file called results.txt.
The delimiter symbol is two tabulators. After the time-stamp and one set of values, there
is a newline. The values are written as ASCII-encoded text by using the fprintf function.

4.5 Diagrams

The following structogram helps understanding the main-function.

Commandline argument present?

true false

number ← parameter number ← 100

connect to 127.0.0.1:1234
send measure X where X = number
create receive buffer
I ← 0

list ← newList()

I < number

buffer ← read(12)
timestamp ← buffer [0− 3]

value1← buffer [4− 7]

value2← buffer [8− 11]

measurement ← newMeasurement(timestamp, value1, value2)
list.add(measurement)
console output
I ← I + 1

close connection
file ← fopen(”results.txt”)
I ← 0

I < number

file.write(m.timestamp+"\t\t"+m.value1+"\t\t"+m.value2+"\r\n")
close file

18

Flow Diagram of the Software and the Device

DeviceClient-Software

Commandline-
argument?

number = argument

Start

number = 100

no

Connect to
127.0.0.1:1234

Start

Wait for incoming
connection on port 1234

Accept Connection

Send „measure
number\n“

Read byte

Parse number

Get measurement
data

Send data

Iterations left?

yes

noReceive 12 bytes

Create new object
from received

data

Output data on
the console

Save object in list

Iterations left?

yes

End

yes

Append
byte to
buffer

Byte == \n? no

yes

Save all
objects in

the list into
results.txt

Figure 4.1: Flowdiagram of the Application and the Device

19

20

Chapter 5

The Process of Reverse Engineering

This chapter explains the necessary steps to find out the important information of a
program. The example application has been compiled with Microsoft Visual Studio 2013
and the pdb-file containing the debug symbols has been removed to simulate the work
on an unknown application.

5.1 Beginning

After opening the executable in IDA the user sees a dialog in which they can set different
options to analyze the file. This includes the architecture as well as different naming
options.1 After clicking the OK button, IDA will begin analyzing the file. It will map
out its strings, imports, exports, the entry point and all other methods. Upon finishing
the initial auto analysis, the user sees the flowchart of the entry point function of the
application, a window listing all the functions of the binary, a graph overview and an
output window which mainly shows errors that might have occurred.
By default, IDA rebases the loaded file to offset 0x400000. This means that in the

application itself this offset has to be subtracted from the values to read the correct
address.

5.1.1 The Main-function pt. 1

As mentioned in chapter 2.4.1, IDA has the option to list the strings used inside the
application in a specific subview. Since the first output in the console is "Measuring
%d values", the user can look for this specific string and follow its DATA-XRef to find
the function using it (as detailed in Figure 2.3). This leads to the function sub_401920.
This method can be renamed to "Main", because it is only referenced once and this is at
the end of the "start" function. The documentation of the software already explained,
that by default, the application will measure 100 values if no command-line argument is
given.
401956 cmp [ebp+arg_0], 2; if commandline arguments count == 2
40195A mov ebx , 64h; move 100 (default no. of values) into ebx
40195F jnz short loc_401972; jmp if not equal
401961 mov eax , [ebp+arg_4]; else put address of 2nd arg into eax
401964 push dword ptr [eax +4]; push pointer to value on the stack
401967 call ds:atoi; convert the value to integer

1IDA can not only analyze x86 binaries, but can also works with ARM-files and many other architectures

21

40196D add esp , 4; clean the stack
401970 mov ebx , eax; save the integer value in ebx

This aspect is shown on line 40195A, where the default value of 100 (64 hex) is put
into the EBX register and on line 40195F a jump occurs, if there is no command-line
argument.

401980 push 4; get 4 bytes for the new object
401982 mov [ebp+var_4], 0
401989 call ds:??2 @YAPAXI@Z; operator new(uint)
40198F add esp , 0Ch; clean the stack
401992 mov [ebp+arg_0], eax; save ptr to local variable
401995 mov byte ptr [ebp+var_4], 1
401999 test eax , eax ; alloc successful?
40199B jz short loc_4019AE ; if not , jmp
40199D sub esp , 8 ; get 8 bytes space on the stack
4019A0 mov ecx , eax ; put the object -pointer into ecx
4019A2 call sub_4012C0 ; thiscall on object
4019A7 mov edi , eax ; move the return value into edi
4019A9 mov [ebp+arg_0], eax ; save ptr to local variable
4019AC jmp short loc_4019B3 ; jump to the next section

The next interesting part to see is that object creation and initialization is split into
two parts. First, new memory for the variables of the object is allocated by calling new
(which could be exchanged with a malloc) and in the next step, initialize the new object
with a thiscall function. This is shown on line 401980 where the size of the to-be-created
object is pushed onto the stack and at 401989 where new is called to allocate that amount
of memory. Since the Object itself has a size of 4 bytes and it is a 32-bit application
there is a high possibility that a pointer is stored there.

5.1.2 Subroutine sub_4012C0

In subroutine sub_4012C0 one can see that functions like WSAStartup2 are used, so this
is the code that initialized the socket, does name-resolution, and connects. This also
explains that the previously created object is some type of connection wrapper.
The key-parts of the intialization are as follows:

401321 push offset pServiceName ; "1234"
401326 push offset pNodeName ; "127 .0.0.1"
40132B mov [esp+1E0h+pHints.ai_socktype], 1
401333 mov [esp+1E0h+pHints.ai_protocol], 6
40133B call ds:getaddrinfo

This part resolves the name and returns the IP-address to that name. In this case an
IP-address has been passed to function, so it can immediately return that IP-address.

401349 mov esi , [esp+1D0h+pAddrInfo]
40134D test esi , esi
40134F jz short loc_401396
401351
401351 loc_401351: ; CODE XREF: sub_4012C0+D0
401351 push dword ptr [esi+0Ch] ; protocol
401354 push dword ptr [esi +8] ; type

2WSAStartup is a Windows specific function to initialize the WinSock functions.[Win]

22

401357 push dword ptr [esi +4] ; af
40135A call ds:socket
401360 mov [edi], eax

Since the initialization of the socket is complete now, it is time to create a socket object.
This object is created on line 40135A and afterwards saved in the first (and only) object-
variable.
401362 cmp eax , 0FFFFFFFFh
401365 jz loc_401439
40136B push dword ptr [esi+10h] ; namelen
40136E push dword ptr [esi+18h] ; name
401371 push eax ; s
401372 call ds:connect
401378 cmp eax , 0FFFFFFFFh
40137B jnz short loc_401392
40137D push dword ptr [edi] ; s

Next, the connect-function is called to open the previously-created socket and connect
to the target host. If that operation was successful, the AddrInfo struct will be freed, as
it is no longer needed.
401392 loc_401392:
401392 mov esi , [esp+1D0h+pAddrInfo] ;move the ptr in esi
401396
401396 loc_401396:
401396 push esi; push the ptr
401397 call ds:freeaddrinfo ;free the AddrInfo
40139D cmp dword ptr [edi], 0FFFFFFFFh;check if [edi] is valid
4013A0 jnz short loc_4013A4;if it is, jump
4013A2 jmp short loc_40140E;if it is not , jmp to throw clause
4013A4 loc_4013A4:
4013A4 mov ecx , [esp+1D0h+var_4]
4013AB mov eax , edi;save the socketPtr in eax
4013AD pop edi;restore register
4013AE pop esi;restore register
4013AF xor ecx , esp;bufferoverflow protection
4013B1 call sub_401D50;same
4013B6 mov esp , ebp;restore the stack
4013B8 pop ebp;restore the stack
4013B9 retn 8;clean the stack and return

5.1.3 The Main-function pt. 2

The second part of the main function focuses on beginning the transaction, letting the
server know how many values the client wants to receive and receiving these values.
4019B3 push offset aSuccessfullyCo ; "Successfully connected !\r\nFetching Value

"...
4019B8 call esi ; printf
4019BA push 1 ; SizeOfElements
4019BC push 64h ; NumOfElements
4019BE mov [ebp+var_4], 0FFFFFFFFh
4019C5 call ds:calloc ; get a buffer for sending
4019CB push ebx ; push number of values
4019CC push offset aMeasureD ; "measure %d\n"
4019D1 push eax ; Dest
4019D2 mov [ebp+Memory], eax ; save the result in a local var

23

4019D5 call ds:sprintf ; put together the request -string
4019DB mov edx , [ebp+Memory] ; put the result into edx
4019DE add esp , 18h ; clean the stack
4019E1 mov ecx , edx ; move the result also into ecx
4019E3 lea eax , [ecx+1] ; string min length = 1
4019E6 mov [ebp+var_18], eax
4019E9 lea esp , [esp+0] ; alignment operation. NOP
4019F0
4019F0 loc_4019F0:
4019F0 mov al, [ecx] ; put the value of ecx in al
4019F2 inc ecx ; increase ecx by 1
4019F3 test al, al ; test if al equals 0
4019F5 jnz short loc_4019F0 ; repeat. find string end
4019F7 sub ecx , [ebp+var_18];calculate the strlen
4019FA push 0 ; flags
4019FC push ecx ; len
4019FD push edx ; buf
4019FE push dword ptr [edi] ; push the socket
401 A00 call ds:send ; send the buffer to the server
401 A06 cmp eax , 0FFFFFFFFh ; if the operation was successful
401 A09 jnz short loc_401A3F ; jump

In line 4019CC one can see that the first message is sent from the client to the server and
has to be "measure %d\n" where %d is the number of values one wants to receive. That
string is written into a buffer (see 4019D5) and that buffer is being sent (see 401A00)
via the socket that was previously opened and connected.
401 A3F loc_401A3F:
401 A3F push [ebp+Memory] ; Memory
401 A42 call ds:free ; free the send buffer
401 A48 push 0Ch ; SizeOfElements
401 A4A push 1 ; NumOfElements
401 A4C call ds:calloc ; create a buffer to receive values
401 A52 add esp , 0Ch ; clean the stack
401 A55 mov esi , eax ; save ptr to buffer in esi

In line 401A42 the send-buffer is freed and in line 401A4C a receive-buffer with 12 bytes
in size is created.
401 A63 loc_401A63: ; CODE XREF: Main +20B
401 A63 push ecx ; save ecx in case we need it later
401 A64 push esi ; push the ptr to the buffer
401 A65 mov ecx , edi ; set the class instance to the previously created

object (connection wrapper)
401 A67 call sub_401470 ; read data from the socket
401 A6C movss xmm0 , dword ptr [esi+4] ; load bytes 4 to 7 as floatingpoint value

into register xmm0
401 A71 mov edi , [esi] ; read the first 4 bytes from the buffer and put

them into edi
401 A73 movss [ebp+var_18], xmm0 ; save the float variable into a local variable
401 A78 movss xmm0 , dword ptr [esi+8] ; load bytes 8 to 11 as floatingpoint value

into register xmm0

In this part of the application the data is received from the host. It consists of 3 variables,
of which the first one is an integer and the two others are floating-point variables.

24

401 A7D push 0Ch ; push the size of the object to be created onto
the stack

401 A7F movss [ebp+Memory], xmm0 ; save the second float variable in another
local variable

401 A84 call ds:??2 @YAPAXI@Z ; operator new(uint)
401 A8A add esp , 4 ; remove one value from the stack
401 A8D test eax , eax ; test if the "new" was successful
401 A8F jz short loc_401AA9 ; if not , jump

Next, a new object is created to save the variables. If the creation of the new object was
not successful, there is a jump to error-handling code.

401 A91 movss xmm0 , [ebp+var_18] ; copy the first variable into the register
401 A96 movss dword ptr [eax+4], xmm0 ; save the first variable in the new

objects second local variable
401 A9B movss xmm0 , [ebp+Memory] ; copy the second variable into the register
401 AA0 movss dword ptr [eax+8], xmm0 ; save the second variable in the new

objects third local variable
401 AA5 mov [eax], edi ; save the first variable from the buffer in the

objects first local variable
401 AA7 jmp short loc_401AAB ; dont null eax

The data is copied from the previously used local variables into the new object

401 AA9 loc_401AA9: ; CODE XREF: Main +16F
401 AA9 xor eax , eax ; null eax
401 AAB
401 AAB loc_401AAB: ; CODE XREF: Main +187
401 AAB movss xmm0 , dword ptr [eax+8] ; load the second float variable into the

register
401 AB0 sub esp , 10h ; get 16 bytes of space on the stack for local

variables
401 AB3 cvtps2pd xmm0 , xmm0 ; convert the singleprecision floatingpoint value

into a double precision
401 AB6 mov [ebp+var_18], eax ; save the object into a local variable
401 AB9 movsd [esp+40h+var_38], xmm0 ; add the second float variable to the stack
401 ABF movss xmm0 , dword ptr [eax+4] ; load the first float variable into the

register
401 AC4 cvtps2pd xmm0 , xmm0 ; convert the variable into double precision
401 AC7 movsd [esp+40h+var_40], xmm0 ; add the first float variable to the stack
401 ACC push dword ptr [eax] ; push the first variable in the object (timestamp)
401 ACE push offset aDFF ; "%d\t\t%f\t\t%f\r\n"
401 AD3 call ds:printf ; make the call to print the variables on the

console

This part of the code converts the floating-point variables to double-precision values,
moves them onto the stack and calls printf to create the console output.

401 AD9 mov eax , dword_404458 ; load the address of the beginning of the list
401 ADE lea ecx , [ebp+var_18] ; load the address of the object into ecx to

prepare the thiscall
401 AE1 add esp , 18h ; reduce the size of the stack by 24 bytes
401 AE4 mov [ebp+Memory], eax ; save the beginning of the list into a local

variable
401 AE7 push ecx ; push the address of the object onto the stack
401 AE8 push dword ptr [eax +4] ; push the endadresse of the list onto the stack
401 AEB push eax ; push the beginning of the list onto the stack
401 AEC call sub_401D30 ; wrap the element in a list -object. returns the

address to that list -object
401 AF1 mov edx , dword_40445C ; move the current length of the list into edx

25

401 AF7 mov ecx , 15555554h ; move the maximal length of a list into ecx
401 AFC sub ecx , edx ; ecx=maximalLength -currentlength
401 AFE mov edi , eax ; copy the address of the new end of the list into

edi
401 B00 cmp ecx , 1 ; if the new length of the list exceeded the

maximum
401 B03 jb loc_401BD8 ; jump
401 B09 mov eax , [ebp+Memory] ; load the beginning of the list into eax again
401 B0C inc edx ; increase edx (the length of the list)
401 B0D mov dword_40445C , edx ; save the new length into the global variable
401 B13 mov [eax+4], edi ; save the new end of the list in the struct at [

BASE+0 x404458]+0x4
401 B16 mov eax , [edi +4] ; get the previous element
401 B19 mov [eax], edi ; set the correct next -element in the previous

element
401 B1B mov eax , dword_404450 ; load the counting variable
401 B20 mov edi , [ebp+arg_0] ; load the connection wrapper -object
401 B23 inc eax ; increase the counting variable
401 B24 mov dword_404450 , eax ; save the modified counting variable back into

memory
401 B29 cmp eax , ebx ; if (eax <= ebx). if we still need to receive

values , jump
401 B2B jle loc_401A63 ; repeat the loop

Finally, the data is wrapped into a list-element-object and appended to the list of mea-
sured values.
The part from 401A63 to 401B2B contains the main-loop of the application that re-

ceives the data and saves it into a list. This list is at 0x404458 in memory and points to
two variables; at offset 0 the beginning of the list and at offset 0x4 the end of the list.
Additionally, at address 0x40445C the current length of the list is saved so there is no
need to iterate through the list to find out its size. This list is based on a double-linked-
list implementation, which can be seen at line 401AEC where the new object is wrapped
into a list-node element that contains a next and a previous pointer. These pointers are
modified on lines 401B13 and following, to insert the new item into the list and maintain
its consistency. Finally, the counting variable on address 0x404450 is loaded, increased,
and written back into memory before checking if there are any interations left to be
executed. If there are iterations left, the procedure begins again.

26

5.2 Conclusion

In this part of the thesis we found out:

• The client tries to connect to host 127.0.0.1 on port 1234.

• The connection is initialized by sending a message in the format "measure XXXX\n",
where XXXX is the number of values to be measured.

• The receive-buffer should be 12 bytes in size to fit at least one measurement com-
pletely.

• One measurement consists of an integer (4 bytes) that contains a time-stamp and
2 float values (each 4 bytes).

• The model inside the application is a double-linked-list of a custom data-type with
one integer and two floats.

• This double-linked-list can be accessed by reading from the memory at 0x404458.
There follow 2 pointers, one leads to the first element of the list at offset 0x0, the
other one leads to the last element of the list at offset 0x4.

• Each list-element consists of a next-pointer, a previous-pointer and a pointer to the
content.

• The double-linked-list is circular, what means that the previous-pointer of the first
item will point to the last element, and the next pointer of the last element will
point to the first element.

• The size of the list can be found at address 0x40445C.

• The counting-variable is at 0x404450 and increased by one each iteration.

27

28

Chapter 6

Using the Acquired Information

In this chapter an application will be created that reads from the example application’s
memory to demonstrate the use of reverse engineering.

6.1 The Application

The application is written in an object-oriented programming language, so the different
aspects are covered in different classes. Following are the different classes and a brief
explanation of their usage.

6.1.1 The Structs

1 using System;
2 using System.Runtime.InteropServices;
3

4 namespace ProcessReader.Structs
5 {
6 [StructLayout(LayoutKind.Sequential)]
7 struct LinkedList
8 {
9 public IntPtr ListStart;

10 public uint Length;
11 }
12 [StructLayout(LayoutKind.Sequential)]
13 struct ListStart
14 {
15 public IntPtr First;
16 public IntPtr Last;
17 }
18 [StructLayout(LayoutKind.Sequential)]
19 struct MeasuredValue
20 {
21 public int Timestamp;
22 public float Value1;
23 public float Value2;
24 }
25 [StructLayout(LayoutKind.Sequential)]
26 struct ListElement
27 {
28 public IntPtr Next;
29 public IntPtr Previous;
30 public IntPtr Content;
31 }
32

29

33 }

The structs have been created according to the findings in chapter 5.2. These do not
have to be created, but it makes the code maintainable and reduces the number of calls
to WinAPI functions which results in faster execution.[Bos]1

6.1.2 WinAPI Imports

1 using System;
2 using System.Runtime.InteropServices;
3

4 namespace ProcessReader
5 {
6 /// <summary >
7 /// Contains the imports to the WinAPI functions
8 /// </summary >
9 public static class Imports

10 {
11 [DllImport("kernel32.dll")]
12 public static extern IntPtr OpenProcess(int dwDesiredAccess , bool

bInheritHandle , int dwProcessId);
13 [DllImport("kernel32.dll")]
14 public static extern bool ReadProcessMemory(IntPtr hProcess ,
15 IntPtr lpBaseAddress , byte[] lpBuffer , int dwSize , ref int

lpNumberOfBytesRead);
16 [DllImport("kernel32.dll", SetLastError = true)]
17 public static extern bool CloseHandle(IntPtr hObject);
18

19 public const int PROCESS_WM_READ = 0x0010;
20 }
21 }

In order to use the WinAPI functions, they have to be imported and their signature has
to be declared. In this example, only the functions OpenProcess, ReadProcessMemory
and CloseHandle are used.[Msdb][Pin]
More information about the usage of these functions can be found in the Microsoft

Developer Network (MSDN).

1On a test of 1000000 iterations reading 1 * 12 bytes took 1125ms while reading 3 * 4 bytes took
3343ms.

30

6.1.3 The Helper-Class

1 using System.Runtime.InteropServices;
2

3 namespace ProcessReader
4 {
5 /// <summary >
6 /// This class provides a helper -function that marshals a byte -array into

a struct
7 /// Sourcecode from http :// stackoverflow.com/questions /14465722/ which -

marshalling -method -is-better
8 /// </summary >
9 class Helper

10 {
11 public static T ByteArrayToStructure <T>(byte[] bytes) where T : struct
12 {
13 var handle = GCHandle.Alloc(bytes , GCHandleType.Pinned);
14 var result = Marshal.PtrToStructure <T>(handle.AddrOfPinnedObject ()

);
15 handle.Free();
16 return result;
17 }
18 }
19 }

The Helper-Class provides a generic method that marshals a byte-array into a struct of
the given type.

6.1.4 The Offsets-Class

1 namespace ProcessReader
2 {
3 /// <summary >
4 /// This class contains the offsets used inside the application
5 /// </summary >
6 internal static class Offsets
7 {
8 public static int LinkedList
9 {

10 get { return 0x4458; }
11 }
12

13 public static int CountingVariable
14 {
15 get { return 0x4450; }
16 }
17

18 }
19 }

The Offsets-Class contains the offsets from chapter 5.2.

31

6.1.5 The Wrapper-Class

1 using System;
2 using System.Collections.Generic;
3 using System.Diagnostics;
4 using ProcessReader.Structs;
5

6 namespace ProcessReader
7 {
8 /// <summary >
9 /// This class hides the WinAPI calls to OpenProcess , CloseHandle and

ReadProcessMemory and provides an API to access the applications
information

10 /// </summary >
11 internal class Wrapper
12 {
13 private IntPtr ProcessHandle { get; set; }
14 private IntPtr BaseAddr { get; set; }
15

16 /// <summary >
17 /// Creates a new instance of the Wrapper -Class and implicitly calls

OpenProcess
18 /// </summary >
19 /// <param name=" targetProcess">The Process to read from </param >
20 public Wrapper(Process targetProcess)
21 {
22 ProcessHandle = Imports.OpenProcess(Imports.PROCESS_WM_READ , false

, targetProcess.Id);
23 BaseAddr = targetProcess.MainModule.BaseAddress;
24 }
25

26 /// <summary >
27 /// Closes the handle to the process
28 /// </summary >
29 ~Wrapper ()
30 {
31 Imports.CloseHandle(ProcessHandle);
32 }
33

34 /// <summary >
35 /// Returns the Loop Counter of the Application
36 /// </summary >
37 public uint Count
38 {
39 get
40 {
41 var buffer = new byte [4];
42 int readBytes =0;
43 Imports.ReadProcessMemory(ProcessHandle , IntPtr.Add(BaseAddr ,

Offsets.CountingVariable), buffer , 4, ref readBytes);
44 if (readBytes == 4)
45 return BitConverter.ToUInt32(buffer , 0);
46 return 0;
47 }
48 }
49

50 /// <summary >
51 /// Reads the lists information and marshals it into structs
52 /// </summary >
53 public unsafe LinkedList List
54 {
55 get

32

56 {
57 var buffer = new byte[sizeof(LinkedList)];
58 int readBytes = 0;
59 Imports.ReadProcessMemory(ProcessHandle , IntPtr.Add(BaseAddr ,

Offsets.LinkedList), buffer , buffer.Length , ref readBytes)
;

60 if (readBytes == buffer.Length)
61 return Helper.ByteArrayToStructure <LinkedList >(buffer);
62 return new LinkedList ();
63

64 }
65 }
66

67 /// <summary >
68 /// Returns the ListStart containing the First and Last -Pointer of the

list
69 /// </summary >
70 private unsafe ListStart Liststart
71 {
72 get
73 {
74 var buffer = new byte[sizeof(ListStart)];
75 int readBytes = 0;
76 Imports.ReadProcessMemory(ProcessHandle , List.ListStart ,

buffer , buffer.Length , ref readBytes);
77 if (readBytes == buffer.Length)
78 return Helper.ByteArrayToStructure <ListStart >(buffer);
79 return new ListStart ();
80 }
81 }
82

83 /// <summary >
84 /// Reads a ListElement and returns it. On failure it returns a new (

empty) element.
85 /// </summary >
86 /// <param name="addr">The address to read from </param >
87 /// <returns >The read element </returns >
88 private unsafe ListElement ReadListElement(IntPtr addr)
89 {
90 var buffer = new byte[sizeof(ListElement)];
91 int readBytes = 0;
92 Imports.ReadProcessMemory(ProcessHandle , addr , buffer , buffer.

Length , ref readBytes);
93 if (readBytes == buffer.Length)
94 return Helper.ByteArrayToStructure <ListElement >(buffer);
95 return new ListElement ();
96 }
97

98 /// <summary >
99 /// Read the MeasuredValue and returns it. On failure it retuns a new

(empty) element.
100 /// </summary >
101 /// <param name="addr">The address to read frm </param >
102 /// <returns >The read element </returns >
103 private unsafe MeasuredValue ReadMeasuredValue(IntPtr addr)
104 {
105 var buffer = new byte[sizeof(MeasuredValue)];
106 int readBytes = 0;
107 Imports.ReadProcessMemory(ProcessHandle , addr , buffer , buffer.

Length , ref readBytes);
108 if (readBytes == buffer.Length)
109 return Helper.ByteArrayToStructure <MeasuredValue >(buffer);

33

110 return new MeasuredValue ();
111 }
112

113 /// <summary >
114 /// Returns a List <> of all MeasuredValues inside the

TargetApplication
115 /// </summary >
116 public List <MeasuredValue > Values
117 {
118 get
119 {
120 var count = (int) Count;
121 var result = new List <MeasuredValue >(count);
122 var first = ReadListElement(Liststart.First);
123 result.Add(ReadMeasuredValue(first.Content));
124 for (int i = 1; i < count; i++)
125 {
126 first = ReadListElement(first.Next);
127 result.Add(ReadMeasuredValue(first.Content));
128 }
129 return result;
130 }
131 }
132

133

134 }
135 }

The Wrapper-Class provides an easily accessible interface to interact with the target
application. It abstracts the raw WinAPI calls and exposes plain C# properties for the
relevant information in the application.
Internally, this is where ReadProcessMemory is called to read from the target appli-

cation. Then, by using the method Helper.ByteArrayToStructure from the Helper-Class,
the bytes are marshalled into the appropriate structs. The Values-Property uses the
combined information from the other properties to enumerate the list containing the
measured values in the target application and returns a native List<MeasuredValue>,
which can be used like any other List<T>.

6.1.6 The Main-Function

1 using System;
2 using System.Diagnostics;
3 using System.Linq;
4

5 namespace ProcessReader
6 {
7 class Program
8 {
9 /// <summary >

10 /// The mainfunction. It searches for the targetapplication , creates a
wrapper object

11 /// and uses that to access the internal information of the target
application

12 /// </summary >
13 static void Main()
14 {

34

15 Process targetProcess = Process.GetProcessesByName("ExampleClient"
).First(); //find the application to read from

16 if (targetProcess == null)
17 {
18 //if it is not found , write a message and abort further

execution
19 throw new Exception("Targetapplication not found. Aborting");
20 }
21 var w = new Wrapper(targetProcess); // create a wrapper -object to

access the internal information of the target application
22

23 foreach (var l in w.Values)
24 {
25 //write all the measured values to the console so we can see

that reading worked successfully
26 Console.WriteLine("Timestamp :{0}\ tValue1 :{1}\ tValue2 :{2}", l.

Timestamp , l.Value1 , l.Value2);
27 }
28 w = null;//free the handle
29 Console.WriteLine("To close the Application press Enter");
30 Console.ReadLine ();
31

32

33 }
34 }
35 }

The Main-function enumerates all available processes to find one with the matching
name (ExampleClient). This process is passed as a parameter to the constructor of the
Wrapper-Class to create an object of that class.
After that, the Values-Property is accessed to enumerate all the measured values and

their information is printed on the console. This would be the point where anything else
could be done to the data, like transforming it, or even e-mailing it.
Finally, the object is destroyed and the handle to the process is freed.

35

36

Chapter 7

Conclusion

This thesis gave an overview of the different phases of reverse engineering, beginning with
the binary file with no knowledge of the internals of the application and ending with the
implementation of a new application that interacts with the first one. It has been shown
that it is possible to perform this process, but it requires a far-ranging knowledge in
different fields of computer science. Reverse engineers must not only know the assembly
language and object-oriented programming, but also have a strong understanding of the
optimization done by the compiler, such as inlining of functions to reduce the number of
call stacks. Additionally, it is important for reverse engineers to have tools such as IDA
on hand to make it easier for them to focus on the task of reversing and minimize time
performing repetitive interpretive tasks decompiling the program.

Furthermore this thesis covered the legal aspects on the topic of reverse engineering
computer software in the United States and the European Union. In the European
Union and the United States, reverse engineering is generally allowed for reasons of
interoperability, but contrary to the situation in the EU, in the US this right can be
overriden by the EULA.

Finally, this thesis showed how to use the insight gained from reverse engineering to
create an application that is able to interact with the original application. It is not only
possible to read memory from that application, but also write to it and execute code in
the context of the target application. Since this requires an even deeper understanding
of the topic, only reading from the other process has been covered as part of this thesis.

7.1 Future work/perspective

Reverse engineering is a wide topic and this thesis only gave an overview of the basics. It
should be mentioned, that there are more advanced parts to it. First, there is obfuscation
which is making the code harder to reverse engineer by outlining/inlining functions and
adding operations like mov eax,eax which do not alter the result but add additional
complexity the reverse engineers have to overcome. Then there are packers which try to
make reverse engineering impossible by packing the code and having an unpacker extract
the code during runtime.

37

7.1.1 Hex-Rays Decompiler

Since reverse engineering is time-consuming, there is a Decompiler-plugin for IDA to
make it easier and give the reverse engineers more time to focus on the important parts.
This decompiler automatically generates pseudo C-code for selected methods or the whole
application. The resulting C-code is not like user-written code, but still understandable.
Additionally, the decompiler is able to automatically detect inlined functions, like those
for string manipulation.[Hex]
This thesis should illustrate the basics of reverse engineering. Due to the fact that

the Hex-Rays decompiler aims at professional users and that it is expensive, only those
features were used, that can be found in other tools too.

7.1.2 Managed Dll Injection

It is not only possible to inject regular Dlls (written in C++) into the target process, but
also managed Dlls which are written in C#. To achieve this, a bootstrap-Dll has to be
written in C++ which starts the Common Language Runtime (CLR) inside the process
and then loads the desired managed Dll in the target process. This implies an overhead
for the additional layer of code, but offers faster development and easier debugging with
Visual Studio, since its debugger can be attached to the target process and configured
to only step through managed code. Combined with unsafe code and marshalling, it is
also possible to create hooks with managed code and call native (internal) functions of
the target application by calling the methods from managed code.

38

Bibliography

Book Sources

[Eag11] Chris Eagle. The ida pro book: the unofficial guide to the world’s most popular
disassembler, 2nd edition, 2011.

Online Documentation

[Msda] Microsoft Developer Network Dynamic-Link Library Best Practices. url: http:
//msdn.microsoft.com/en-us/library/windows/desktop/dn633971(v=vs.
85).aspx.

[Msdb] Microsoft Developer Network OpenProcess. url: http://msdn.microsoft.
com/en-us/library/windows/desktop/ms684320(v=vs.85).aspx.

[Msdc] Microsoft Developer Network VS2013 Fastcall. url: http://msdn.microsoft.
com/en-us/library/6xa169sk.aspx.

[Pin] PInvoke.net. url: http://www.pinvoke.net/.

Other Sources

[Dll] Three ways to inject your code into another process. url: http : / / www .
codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-
into-Another-Proces.

[Fri14] Steve Friedl. Steve friedls unixwiz.net tech tips. 2014. url: http://unixwiz.
net/techtips/win32-callconv.html.

[Hex] Decompilation vs. disassembly. url: https://www.hex-rays.com/products/
decompiler/compare_vs_disassembly.shtml.

[Mus98] David C. Musker. Protecting and exploiting intellectual property in electron-
ics. 1998. url: http://www.jenkins.eu/articles- general/reverse-
engineering.asp.

[Oll] Ollydbg. url: http://www.ollydbg.de/.

[Pro] Decompilation and reverse engineering. url: http://www.program-transformation.
org/Transform/DecompilationAndReverseEngineering.

[Usc] 17 u.s. code § 1201 - circumvention of copyright protection systems. url: http:
//www.law.cornell.edu/uscode/text/17/1201.

39

http://msdn.microsoft.com/en-us/library/windows/desktop/dn633971(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn633971(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn633971(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684320(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684320(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/6xa169sk.aspx
http://msdn.microsoft.com/en-us/library/6xa169sk.aspx
http://www.pinvoke.net/
http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://unixwiz.net/techtips/win32-callconv.html
http://unixwiz.net/techtips/win32-callconv.html
https://www.hex-rays.com/products/decompiler/compare_vs_disassembly.shtml
https://www.hex-rays.com/products/decompiler/compare_vs_disassembly.shtml
http://www.jenkins.eu/articles-general/reverse-engineering.asp
http://www.jenkins.eu/articles-general/reverse-engineering.asp
http://www.ollydbg.de/
http://www.program-transformation.org/Transform/DecompilationAndReverseEngineering
http://www.program-transformation.org/Transform/DecompilationAndReverseEngineering
http://www.law.cornell.edu/uscode/text/17/1201
http://www.law.cornell.edu/uscode/text/17/1201

[Win] Wsastartup function. url: http://msdn.microsoft.com/de-de/library/
windows/desktop/ms742213(v=vs.85).aspx.

[IEE11] IEEE USA. Position statement reverse engineering. 2011. url: http://www.
ieeeusa.org/policy/positions/reverseengineering1111.pdf.

Unpublished

[Bos] Julian Bosch. Speed of ReadProcessMemory on reading 1x12 and 3x4 bytes.

40

http://msdn.microsoft.com/de-de/library/windows/desktop/ms742213(v=vs.85).aspx
http://msdn.microsoft.com/de-de/library/windows/desktop/ms742213(v=vs.85).aspx
http://www.ieeeusa.org/policy/positions/reverseengineering1111.pdf
http://www.ieeeusa.org/policy/positions/reverseengineering1111.pdf

	Introduction
	Reverse Engineering - Theory
	Definition
	Types of Reverse Engineering
	File Structure
	Protocols
	Function

	Legal Aspects
	European Union
	United States

	Tools
	IDA - The Interactive Disassembler

	General Approach
	Using the Acquired Information
	Memory Reading/Writing
	Hooking
	Injection
	Code-Injection
	Dll-Injection

	Background
	The Environment
	Assembly-language
	Operations
	The Stack
	Stackframe
	Flow Control
	Return Values

	Calling Conventions
	Cdecl
	Stdcall
	Fastcall
	Thiscall

	The Example Application
	The Application
	Starting the Application
	Network Protocol
	File Structure
	Diagrams

	The Process of Reverse Engineering
	Beginning
	The Main-function pt. 1
	Subroutine sub_4012C0
	The Main-function pt. 2

	Conclusion

	Using the Acquired Information
	The Application
	The Structs
	WinAPI Imports
	The Helper-Class
	The Offsets-Class
	The Wrapper-Class
	The Main-Function

	Conclusion
	Future work/perspective
	Hex-Rays Decompiler
	Managed Dll Injection

	Bibliography

